MoP₃SiO₁₁: A Silicophosphate of Molybdenum(III)

A. LECLAIRE AND B. RAVEAU

Laboratoire de Cristallographie, Chimie et Physique des Solides, U.A. 251, ISMRa-Université, 14032 Caen Cedex, France

Received April 28, 1986

A new molybdenum(III) silicophosphate MoP₃SiO₁₁ was synthesized. Its structure was determined from a single-crystal study in the space group C2/c and the parameters a = 14.584(2) Å, b = 8.416(1) Å, c = 14.180(1) Å, $\beta = 110.05(6)^{\circ}$. The three-dimensional framework of this oxide is built of cornersharing P₂O₇ and Si₂O₇ groups and MoO₆ octahedra. The structure of this oxide is closely related to that of AMo₃P₆Si₂O₂₅ (A = K, Rb, Tl); both contain identical $[Mo_2P_6Si_2O_{22}]_{\infty}$ slabs, in which one can recognize the P₆Si₂O₂₅ units. The main difference between the two structures lies in the connection of those slabs: in MoP₃SiO₁₁ they are connected directly through the corners of their PO₄ tetrahedra, whereas in AMo₃P₆Si₂O₂₅ additional planes of octahedra are introduced between the slabs. The structural relationships between MoP₃SiO₁₁ and the vanadosilicophosphate V₃P₅SiO₁₉ are also discussed. @ 1987 Academic Press, Inc.

Introduction

The study of oxides characterized by a mixed framework built of octahedra and tetrahedra is attractive owing to the possibility of synthesizing host lattices intermediate between those of zeolites and of octahedral bronzes with a tunnel structure. The synthesis and studies of the large family of phosphate tungsten bronzes in which PO₄ tetrahedra and P₂O₇ groups adapt the ReO₃type framework confirm this point of view (1, 2). A recent study of the molybdophosphates and molybdosilicophosphates shows that molybdenum is also a potential candidate for the formation of such structures; the chemistry of this element appears, like that of tungsten, rather rich, owing to its ability to take several oxidation states. However, contrary to tungsten, electrons

could not be delocalized in the framework but would be localized on the molybdenum ions in octahedral configurations, as observed in the phosphates $K_4Mo_8P_{12}O_{52}(3)$, characterized by the presence of Mo(V)ions off center in the MoO_6 octahedra, and $AMo_2P_3O_{12}$ (A = K, Rb, Tl) (4), in which the Mo(IV) ions exhibit an octahedral coordination. A recent study of the silicophosphates $AM_3P_6Si_2O_{25}(5-7)$ has led us to consider for the pure molybdenum oxides two possibilities corresponding either to the presence of Mo(IV) only, characterized by the formula $AMo_3^{IV}P_{5,8}Si_2O_{25}$, or to the presence of Mo(IV) and Mo(III) simultaneously, according to the formula AMo_2^{IV} $Mo^{III}P_6Si_2O_{25}$. The present work deals with the structural study of a new silicophosphate, Mo(III) Mo^{III}P₃SiO₁₁, whose structure is closely related to that of AM₃P₆Si₂ O₂₅.

Experimental

Synthesis. The silicophosphate MoP₃ SiO₁₁ was prepared in two steps. First, MoO₃, SiO₂, and ammonium phosphate (NH₄)₂HPO₄ were mixed in an agate mortar in the molar ratios SiO₂: (NH₄)₂HPO₄: MO_3 = 1:3:0.5 and heated at 620°C to obtain the stoichiometry " $M_{0.5}P_3SiO_{11}$." The resulting mixture was than added to the required amount of molybdenum (i.e., 0.5 Mo) and heated in an evacuated silica ampoule for 12 hr at 1000°C. Single crystals could be isolated at the surface of the sintered sample.

During the investigation of the Ba-Si-P-O system, single crystals with the same composition and parameters were also isolated.

Structural determination. A yellow flat plate of $0.19 \times 0.17 \times 0.02$ mm was selected for the structural determination.

The Laue patterns showed monoclinic symmetry (m). The cell parameters in "abstract" were determined by diffractometric techniques with a least-squares refinement based on 25 reflections. Systematic absences in all the space for h + k = 2n + 1and hol for l = 2n + 1 led to the space groups Cc or C2/c.

The data were collected on a CAD 4 Enraf-Nonius diffractometer using graphite-monochromatized MoK α radiation. The intensities were measured up to $\theta = 45^{\circ}$ with an ω - θ scan of $(0.90 + 0.35 \tan \theta)^{\circ}$ and a counter slit aperture of $(1.00 + \tan \theta)$ mm, all determined after a study of some reflections in the $\omega\theta$ plane. The background intensity was measured on both sides of each reflection. A periodic intensity measured on the 600, 020, and $60\overline{2}$ reflections verified the stability of the sample. The 3287 independent reflections for which $I \ge 3\sigma$ (I) were corrected for Lorentz and polarization effects.

The Mo atomic coordinates were deduced from a three-dimensional Patterson

 TABLE I

 MoP3SiO11: Atomic Coordinates

Atom	x	У	z	B_{eq}	
Mo	0.09088(1)	0.25000(3)	0.02267(1)	0.39(1)	
P(1)	-0.03788(4)	0.04756(7)	0.14195(5)	0.47(1)	
P(2)	0.31616(4)	0.09844(7)	0.14196(4)	0.49(1)	
P(3)	0.38628(4)	0.10398(7)	0.35802(4)	0.47(1)	
Si	0.21046(4)	0.2500712)	0.38147(4)	0.47(1)	
O(1)	0.23377(14)	0.21326(25)	0.11828(16)	0.87(3)	
O(2)	0.08549(15)	0.43527(24)	0.11821(16)	0.85(4)	
O(3)	0.04877(14)	0.10172(26)	0.11823(16)	0.85(4)	
O(4)	0.12876(16)	0.41264(27)	-0.07075(16)	0.90(4)	
O(5)	0.10645(15)	0.06507(26)	-0.07045(16)	0.89(4)	
O(6)	-0.05580(13)	0.27268(23)	-0.07059(15)	0.86(4)	
O(7)	-0.09733(13)	0.19396(24)	0.15953(15)	0.79(3)	
O(8)	0.	-0.03410(31)	0.25	0.68(5)	
O(9)	0.25	0.25	0.5	1.13(5)	
O(10)	0.21861(14)	0.42708(21)	0.34057(15)	0.74(3)	
oàń	0.27458(13)	0.12886(23)	0.34066(15)	0.73(3)	
O(12)	0.39187(13)	0.14213(24)	0.25005(14)	0.70(3)	

map. The remaining atoms were located in subsequent Fourier syntheses. Scattering factors and anomalous-dispersion corrections for the different atoms of the compound were taken from the "International Tables for X-Ray Crystallography" (8).

The atomic parameters with anisotropic thermal factors were refined by full-matrix least squares, and a linear weighting scheme $w = f[(\sin \theta)/\lambda]$ was adjusted by using the program POND (9). The reliability factors were lowered to R = 0.027 and $R_w = 0.030$ with s = 1.33. Final atomic parameters are given in Table I.¹

Description of the Structure and Discussion

The structure of MoP₃SiO₁₁ is built of corner-sharing MoO₆ octahedra, diphosphate groups P₂O₇, and disilicate groups Si₂ O₇ (Fig. 1). Each MoO₆ octahedron shares its six corners with P₂O₇ groups, whereas in a similar way, each Si₂O₇ group is linked to six P₂O₇ groups, with the result that each P₂ O₇ group shares four corners with the MoO₆

¹ Lists of structure factors and of anisotropic thermal parameters are available from the authors on request.

FIG. 1. Projection along **b** of the MoP₃SiO₁₁ structure.

octahedra and two corners with the Si_2O_7 groups.

For each PO₄ tetrahedron, three sorts of P-O distances can be distinguished (Table IIB):

(i) the short bonds $(\langle P-O \rangle_6 = 1.49 \text{ Å})^2$, which corresponds to the oxygen atom common to a PO₄ tetrahedron and a MoO₆ octahedron.

(ii) the intermediate bonds $(\langle P-O \rangle_3 = 1.576 \text{ Å})$, in which the oxygen atom is linked to a phosphorus atom and a silicon atom simultaneously.

(iii) the long bonds ($\langle P-O \rangle_3 = 1.595$ Å), in which the bridging oxygen atom is shared by two PO₄ tetrahedra.

Nevertheless the PO₄ tetrahedra are almost regular and the phosphorus atom is off center by about 0.11 Å with respect to the center of gravity of the "O₄" tetrahedron.

The SiO₄ tetrahedron are also quasi-regular (Table IIC): a short Si-O bond (1.579 Å) is observed for the bridging oxygen atom common to two Si whereas the three other Si-O bonds in which each oxygen atom is common to a SiO₄ and a PO₄ tetrahedron are longer ($(Si-O)_3 = 1.619$ Å).

The tervalent state observed for molyb-

FIG. 2. Projection along **a** of the $AMo_3P_6Si_2O_{25}$ structure.

² $\langle P-O \rangle_n$ is the mean value of *n* P-O bonds.

A. Geometry of MoO ₆ Octahedron						
Мо	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)
O(1)	2.083(2)	2.858(3)	2.856(3)	3.087(3)	2.959(3)	4.814(3)
O(2)	86.58(8)°	2.085(2)	2.858(3)	2.962(4)	4.184(3)	3.083(3)
O(3)	86.56(8)°	86.56(9)°	2.083(2)	4.187(3)	3.083(4)	2.961(3)
O(4)	94.95(9)°	89.95(9)°	176.12(9)°	2.106(3)	2.943(3)	2.939(3)
O(5)	89.98(8)°	176.19(8)°	94.85(9)°	88.74(9)°	2.103(2)	2.941(3)
O(6)	176.22(8)	94.81(8)°	90.01(8)°	88.57(8)°	88.73(8)°	2.103(2)

TABLE II

В.	Distances	and	Angles	in	PO ₄	Tetrahedra
_						

O(3)	O(5 ⁱ)	O(7)	O(8)
1.486(2)	2.550(3)	2.518(3)	2.493(3)
117.7(1)°	1.494(2)	2.500(3)	2.500(2)
110.7(1)°	109.1(1)	1.575(2)	2.469(3)
107.9(1)°	108.0(1)	102.3(1)	1.595(1)
O(1)	O(4 ⁱⁱ)	O(10 ⁱⁱⁱ)	O(12)
1.488(2)	2.554(4)	2.519(3)	2.492(2)
117.9(1)°	1.493(3)	2.499(3)	2.498(3)
110.6(1)°	109.0(1)	1.576(2)	2.470(3)
107.9(1)°	108.0(1)°	102.4(1)°	1.595(2)
O(2 ⁱⁱⁱ)	O(6 ^{iv})	O(11)	O(12)
1.485(2)	2.546(3)	2.519(3)	2.491(3)
117.6(1)°	1.493(2)	2.501(3)	2.497(3)
110.7(1)°	109.1(1)°	1.576(2) 2.469(3	
108.0(1)°	107.9(1)°	102.3(1)°	1.594(2)
	O(3) 1.486(2) 117.7(1)° 110.7(1)° 107.9(1)° O(1) 1.488(2) 117.9(1)° 106(1)° 107.9(1)° O(2 ⁱⁱⁱ) 1.485(2) 117.6(1)° 110.7(1)° 108.0(1)°	$\begin{array}{c cccc} O(3) & O(5^{i}) \\ \hline 1.486(2) & 2.550(3) \\ 117.7(1)^{\circ} & 1.494(2) \\ 110.7(1)^{\circ} & 109.1(1) \\ 107.9(1)^{\circ} & 108.0(1) \\ \hline \\ O(1) & O(4^{ii}) \\ \hline \\ 1.488(2) & 2.554(4) \\ 117.9(1)^{\circ} & 1.493(3) \\ 110.6(1)^{\circ} & 109.0(1) \\ 107.9(1)^{\circ} & 108.0(1)^{\circ} \\ \hline \\ O(2^{iii}) & O(6^{iv}) \\ \hline \\ 1.485(2) & 2.546(3) \\ 117.6(1)^{\circ} & 1.493(2) \\ 110.7(1)^{\circ} & 109.1(1)^{\circ} \\ 108.0(1)^{\circ} & 107.9(1)^{\circ} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C. Distances and Angles in SiO₄ Tetrahedron

	0/50		0/10		
Si	0(7)	U(9)	0(10)		
O(7)	1.620(2)	2.616(2)	2.641(3)	2.642(3)	
O(9)	109.7(1)°	1.579(1)	2.614(2)	2.613(2)	
O(10)	109.3(1)°	109.7(1)°	1.618(2)	2.639(3)	
0(11)	109.3(1)°	109.6(1)°	109.2(1)°	1.619(2)	

^a Symmetry code: i, -x, -y, -z; ii, $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z; iii, $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; iv, $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; v, -x, y, $\frac{1}{2} - z$.

denum in this compound must be pointed out, owing to the fact that this oxidation state is rarely observed for molybdenum in oxides. The existence of this Mo(III) silicophosphate suggests that the formula proposed for the oxide $AMo_3^{JV}P_{5.8}Si_2O_{25}$ (5-7) could be, in fact, $AMo_3P_6Si_2O_{25}$; the latter mixed valence oxide, which is also characterized by isolated MoO_6 octahedra, would present two localized states for molybdenum, corresponding to the presence of $(Mo^{IV}O_6)$ and $Mo^{III}O_6$ octahedra simultaneously in the structure. The interatomic distances $Mo^{III}-O$ observed in MoP_3SiO_{11} (Table IIA) are in agreement with those observed for one type of MoO_6 octahedron in $AMo_2^{IV}Mo^{III}P_6Si_2O_{25}$ (5–7); these octahedra are characterized by three short Mo–O distances—2.084 Å in MoP_3SiO_{11} and 2.044 Å in $RbMo_3P_6Si_2O_{25}$ —and three longer Mo–O distances—2.104 Å in MoP_3SiO_{11} and 2.059 Å in $AMo_3P_6Si_2O_{25}$.

The structure of this oxide is closely related to that of $AMo_3P_6Si_2O_{25}$, as shown by a comparison of the projections along b (Fig. 1) and a (Fig. 2), respectively. Both frameworks are formed of identical mixed slabs $|Mo_2P_6Si_2O_{22}|_{\infty}$ built of corner-sharing Si_2O_7 groups, MoO_6 octahedra, and PO_4 tetrahedra. The projection of such a slab along [103] on the (001) plane (Fig. 3a) shows that it can be described as built of $Si_2P_6O_{25}$ units previously observed in $AMo_3P_6Si_2O_{25}$ (Fig. 3b) (5-7) and in the oxides $V_3P_5SiO_{19}$ (10)

FIG. 3. (a) Projection along |103| on the 001 plane of a Mo₂P₆Si₂O₂₂ slab. (b) Projection along c of the $AMo_3P_6Si_2O_{25}$ structure.

FIG. 4. Columns formed by the connection between two $Mo_2P_6Si_2O_{22}$ slabs (a) in MoP_3SiO_{11} , (b) in AMo_3P_6 Si_2O_{25} .

and the oxide $Si_5P_6O_{25}$ (11). Nevertheless, these tetrahedral units of $Si_2P_6O_{25}$, unlike those of the other oxides, are not isolated in MoP₃SiO₁₁; they share the corners of the PO₄ tetrahedra, forming P₂O₇ groups which are common to two adjacent [Mo₂P₆Si₂O₂₂] slabs. Consequently the P₂O₇ groups and the Si₂O₇ groups form a three-dimensional framework [P₆Si₂O₂₂]_∞ which delimits octahedral cavities where the Mo(III) ions are located.

The main difference between MoP_3SiO_{11} and AMo₃P₆Si₂O₂₅ lies in the junction between the $[Mo_2P_6Si_2O_{22}]$ slabs along the c direction. In MoP₃SiO₁₁ two adjacent slabs are linked directly to each other, in such a way that three PO₄ tetrahedra of one slab share their corners with the three other PO₄ tetrahedra of the second slab (Fig. 1), forming units of two octahedra connected through three P_2O_7 groups characterized by an eclipsed configuration (Fig. 4a). In AMo₃ $P_6Si_2O_{25}$, two successive $[Mo_2P_6Si_2O_{22}]$ slabs are connected to each other through a "plane" of "MoO₆" octahedra whose ternary axis is parallel to c (Fig. 2); these additional octahedra share their vertices with the PO_4 tetrahedra, forming unit built of three octahedra and six PO₄ tetrahedra (Fig. 4b) previously described (5). Thus, it appears that the structure of the oxides $AMo_3P_6Si_2O_{25}$ can be deduced from that of MoP_3SiO_{11} by the simple introduction of planes of MoO₆ octahedra between the Mo₂ $P_6Si_2O_{22}$ layers, forming intersecting tunnels where the additional A ions (K, Rb, Tl) are located. Consequently, a new series of oxides can be predicted to correspond to the general formulation AMoO₃ (Mo₂P₆Si₂ O_{22} , where *n* is an integral number; in this series MoP₃SiO₁₁ and AMo₃P₆Si₂O₂₅ correspond to the members $n = \infty$ and n = 1, respectively. This phenomenon, the formation of additional tunnels, is closely related to the one observed in pure octahedral frameworks. It is indeed observed in the pyrochlore structure AM_2O_6 (Fig. 5a), which can be deduced from the hexagonal tungsten bronze structure AM_3O_9 (HTB slabs) by introduction of similar MO₃ planes of octahedra (12) so that it can be described as the first members of the series AMO_3 $(AM_3O_9)_n$. Also closely related to those structures are the oxides $AMoO_3 (AM_6O_{15})_n$ and $(AM_3O_9)_{n'}$ (13–15).

The structure of the vanadosilicophosphate $V_3P_5SiO_{19}$ (10) is also closely related to the structures of MoP₃SiO₁₁ and AMo₃P₆ Si₂O₂₅. The latter oxide is also characterized by Si₂P₆O₂₅ units, which are isolated as in AMo₃P₆Si₂O₂₅ (5-7). Again one observes similar mixed slabs parallel to the (001) plane of the hexagonal cell (Fig. 6a). However, in that oxide the slabs are silicon defi-

FIG. 5. Pyrochlore structure AM_2O_6 .

FIG. 6. Projections of $V_3P_5SiO_{19}$ structure (a) along c, (b) along |120| showing the connection between two $Mo_2P_6Si_2O_{22}$ slabs (shaded polyhedra) by a plane of VO₆ octahedra.

cient, so that in the same slab one row of Si_2O_7 groups alternates with two rows of SiO_4 tetrahedra. In $V_3P_5SiO_{19}$ the different slabs are connected to each other through additional VO₆ octahedra whose ternary axes are parallel to c (Fig. 6b) as in MOP₃ SiO_{11} . However, the mode of connection is very different from that observed for Mo P_3SiO_{11} ; each additional VO₆ octahedron belonging to one slab and shares its three other vertices with the PO₄ tetrahedra be-

longing to the other slab, so that V_2O_9 clusters are formed.

Conclusions

The structural study of MoP₃SiO₁₁ shows that the tervalent state of molybdenum is quite stable in oxides that are unambiguous. This study leads us to suggest that the formula of the intersecting tunnel structure $AMo_3P_{5.8}Si_2O_{25}$ is in fact $AMo_3P_6Si_2O_{25}$, characterized by the simultaneous presence of Mo(III) and Mo(IV) ions in octahedral coordination. The close relationships between MoP₃SiO₁₁ and the oxides $AMo_3P_6Si_2$ O_{25} and $V_3P_5SiO_{11}$ show the great flexibility of the $P_6Si_2O_{25}$ units and offer a wide field of research for the synthesis of structures characterized by a mixed framework. The introduction of "planes of octahedra" similar to the phenomenon observed in octahedra frameworks such as those related to the HTBs and pyrochlore should make it possible to generate new oxides with a tunnel structure.

References

- B. RAVEAU, in "Proceedings, Indian National Science Academi, New Delhi, 52, 67 (1986).
- B. RAVEAU, in "Proceedings, Indian Academy of Sciences, Bangalore, 96, 419 (1986).

- 3. A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, J. Solid State Chem. 48, 147 (1983).
- 4. A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, J. Solid State Chem. 59, 301 (1985).
- 5. A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, Acta Crystallogr. Sect. B 40, 180 (1984).
- A. LECLAIRE, M. M. BOREL, A. GRANDIN, AND B. RAVEAU, Mater. Chem. Phys. 12, 537 (1985).
- 7. A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, Acta Crystallogr. Sect. C 41, 1719 (1985).
- "International Tables for X-ray Crystallography," Vol. IV, p. 72, Kynoch Press, Birmingham, 1974.
- 9. A. LECLAIRE, unpublished.
- A. LECLAIRE, H. CHAHBOUN, D. GROULT, AND B. RAVEAU, J. Solid State Chem. 65, 168 (1986).
- 11. H. MAYER, Mon. Chem. 105, 46 (1974).
- 12. B. RAVEAU, Rev. Inorg. Chem. 1, 81 (1979).
- 13. C. MICHEL, A. GUYOMARC'H, AND B. RAVEAU, J. Solid State Chem. 25, 251 (1978).
- 14. C. MICHEL, A. GUYOMARC'H, AND B. RAVEAU, J. Solid State Chem. 22, 393 (1977).
- G. DESGARDIN, C. ROBERT, D. GROULT, AND B. RAVEAU, J. Solid State Chem. 22, 101 (1977).