$\mathrm{MoP}_{3} \mathrm{SiO}_{11}$: A Silicophosphate of Molybdenum(III)

A. LECLAIRE and B. RAVEAU
Laboratoire de Cristallographie, Chimie et Physique des Solides, U.A. 251, ISMRa-Université, 14032 Caen Cedex, France

Received April 28, 1986

Abstract

A new molybdenum(III) silicophosphate $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ was synthesized. Its structure was determined from a single-crystal study in the space group $C 2 / c$ and the parameters $a=14.584(2) \AA, b=8.416(1) \AA$, $c=14.180(1) \AA, \beta=110.05(6)^{\circ}$. The three-dimensional framework of this oxide is built of cornersharing $\mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups and MoO_{6} octahedra. The structure of this oxide is closely related to that of $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}(A=\mathrm{K}, \mathrm{Rb}, \mathrm{Tl})$; both contain identical $\left[\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right]_{\infty}$ slabs, in which one can recognize the $\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ units. The main difference between the two structures lies in the connection of those slabs: in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ they are connected directly through the corners of their PO_{4} tetrahedra, whereas in $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ additional planes of octahedra are introduced between the slabs. The structural relationships between $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and the vanadosilicophosphate $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ are also discussed. © 1987 Academic Press, Inc.

Introduction

The study of oxides characterized by a mixed framework built of octahedra and tetrahedra is attractive owing to the possibility of synthesizing host lattices intermediate between those of zeolites and of octahedral bronzes with a tunnel structure. The synthesis and studies of the large family of phosphate tungsten bronzes in which PO_{4} tetrahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups adapt the $\mathrm{ReO}_{3^{-}}$ type framework confirm this point of view (1,2). A recent study of the molybdophosphates and molybdosilicophosphates shows that molybdenum is also a potential candidate for the formation of such structures; the chemistry of this element appears, like that of tungsten, rather rich, owing to its ability to take several oxidation states. However, contrary to tungsten, electrons
could not be delocalized in the framework but would be localized on the molybdenum ions in octahedral configurations, as observed in the phosphates $\mathrm{K}_{4} \mathrm{Mo}_{8} \mathrm{P}_{12} \mathrm{O}_{52}$ (3), characterized by the presence of $\mathrm{Mo}(\mathrm{V})$ ions off center in the MoO_{6} octahedra, and $A \mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ ($A=\mathrm{K}, \mathrm{Rb}, \mathrm{Tl}$) (4), in which the $\mathrm{Mo}(\mathrm{IV})$ ions exhibit an octahedral coordination. A recent study of the silicophosphates $A M_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}(5-7)$ has led us to consider for the pure molybdenum oxides two possibilities corresponding either to the presence of Mo(IV) only, characterized by the formula $A \mathrm{Mo}_{3}^{\mathrm{IV}^{\mathrm{V}}} \mathrm{P}_{5.8} \mathrm{Si}_{2} \mathrm{O}_{25}$, or to the presence of $\mathrm{Mo}(\mathrm{IV})$ and Mo (III) simultaneously, according to the formula $A \mathrm{Mo}_{2}^{\mathrm{IV}}$ $\mathrm{Mo}^{\mathrm{II}} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$. The present work deals with the structural study of a new silicophosphate, Mo (III) $\mathrm{Mo}^{\text {III }} \mathrm{P}_{3} \mathrm{SiO}_{11}$, whose structure is closely related to that of $A M_{3} \mathrm{P}_{6} \mathrm{Si}_{2}$ O_{25}.

Experimental

Synthesis. The silicophosphate MoP_{3} SiO_{11} was prepared in two steps. First, $\mathrm{MoO}_{3}, \mathrm{SiO}_{2}$, and ammonium phosphate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ were mixed in an agate mortar in the molar ratios $\mathrm{SiO}_{2}:\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}: \mathrm{MO}_{3}$ $=1: 3: 0.5$ and heated at $620^{\circ} \mathrm{C}$ to obtain the stoichiometry " $M_{0.5} \mathrm{P}_{3} \mathrm{SiO}_{11}$." The resulting mixture was than added to the required amount of molybdenum (i.e., 0.5 Mo) and heated in an evacuated silica ampoule for 12 hr at $1000^{\circ} \mathrm{C}$. Single crystals could be isolated at the surface of the sintered sample.

During the investigation of the $\mathrm{Ba}-\mathrm{Si}-\mathrm{P}-$ O system, single crystals with the same composition and parameters were also isolated.

Structural determination. A yellow flat plate of $0.19 \times 0.17 \times 0.02 \mathrm{~mm}$ was selected for the structural determination.

The Laue patterns showed monoclinic symmetry (m). The cell parameters in "abstract" were determined by diffractometric techniques with a least-squares refinement based on 25 reflections. Systematic absences in all the space for $h+k=2 n+1$ and $h 0 l$ for $l=2 n+1$ led to the space groups $C c$ or $C 2 / c$.

The data were collected on a CAD 4 Enraf-Nonius diffractometer using graph-ite-monochromatized MoK α radiation. The intensities were measured up to $\theta=45^{\circ}$ with an $\omega-\theta \operatorname{scan}$ of $(0.90+0.35 \tan \theta)^{\circ}$ and a counter slit aperture of $(1.00+\tan \theta) \mathrm{mm}$, all determined after a study of some reflections in the $\omega \theta$ plane. The background intensity was measured on both sides of each reflection. A periodic intensity measured on the 600,020 , and $60 \overline{2}$ reflections verified the stability of the sample. The 3287 independent reflections for which $I \geq 3 \sigma$ (I) were corrected for Lorentz and polarization effects.

The Mo atomic coordinates were deduced from a three-dimensional Patterson

TABLE I
$\mathrm{MoP}_{3} \mathrm{SiO}_{\mathrm{II}}$: Atomic Coordinates

Atom	x	y	z	$B_{\text {eq }}$
Mo	$0.09088(1)$	$0.25000(3)$	$0.02267(1)$	$0.39(1)$
$\mathrm{P}(1)$	$-0.03788(4)$	$0.04756(7)$	$0.14195(5)$	$0.47(1)$
$\mathrm{P}(2)$	$0.31616(4)$	$0.09844(7)$	$0.14196(4)$	$0.49(1)$
$\mathrm{P}(3)$	$0.38628(4)$	$0.10398(7)$	$0.35802(4)$	$0.47(1)$
Si	$0.21046(4)$	$0.2500712)$	$0.38147(4)$	$0.47(1)$
$\mathrm{O}(1)$	$0.23377(14)$	$0.21326(25)$	$0.11828(16)$	$0.87(3)$
$\mathrm{O}(2)$	$0.08549(15)$	$0.43527(24)$	$0.11821(16)$	$0.85(4)$
$\mathrm{O}(3)$	$0.04877(14)$	$0.10172(26)$	$0.11823(16)$	$0.85(4)$
$\mathrm{O}(4)$	$0.12876(16)$	$0.41264(27)$	$-0.07075(16)$	$0.90(4)$
$\mathrm{O}(5)$	$0.10645(15)$	$0.06507(26)$	$-0.07045(16)$	$0.89(4)$
$\mathrm{O}(6)$	$-0.05580(13)$	$0.27268(23)$	$-0.07059(15)$	$0.86(4)$
$\mathrm{O}(7)$	$-0.09733(13)$	$0.19396(24)$	$0.15953(15)$	$0.79(3)$
$\mathrm{O}(8)$	0	$-0.03410(31)$	0.25	$0.68(5)$
$\mathrm{O}(9)$	0.25	0.25	0.5	$1.13(5)$
$\mathrm{O}(10)$	$0.21861(14)$	$0.42708(21)$	$0.34057(15)$	$0.74(3)$
$\mathrm{O}(11)$	$0.27458(13)$	$0.12886(23)$	$0.34066(15)$	$0.73(3)$
$\mathrm{O}(12)$	$0.39187(13)$	$0.14213(24)$	$0.25005(14)$	$0.70(3)$
-				

map. The remaining atoms were located in subsequent Fourier syntheses. Scattering factors and anomalous-dispersion corrections for the different atoms of the compound were taken from the "International Tables for X-Ray Crystallography" (8).

The atomic parameters with anisotropic thermal factors were refined by full-matrix least squares, and a linear weighting scheme $w=f[(\sin \theta) / \lambda]$ was adjusted by using the program POND (9). The reliability factors were lowered to $R=0.027$ and $R_{w}=0.030$ with $s=1.33$. Final atomic parameters are given in Table i. ${ }^{1}$

Description of the Structure and Discussion

The structure of $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ is built of corner-sharing MoO_{6} octahedra, diphosphate groups $\mathrm{P}_{2} \mathrm{O}_{7}$, and disilicate groups Si_{2} O_{7} (Fig. 1). Each MoO_{6} octahedron shares its six corners with $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, whereas in a similar way, each $\mathrm{Si}_{2} \mathrm{O}_{7}$ group is linked to six $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, with the result that each P_{2} O_{7} group shares four corners with the MoO_{6}

[^0]

Fig. 1. Projection along b of the $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ structure.
octahedra and two corners with the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups.

For each PO_{4} tetrahedron, three sorts of $\mathrm{P}-\mathrm{O}$ distances can be distinguished (Table IIB):
(i) the short bonds $\left(\langle\mathrm{P}-\mathrm{O}\rangle_{6}=1.49 \AA\right)^{2}$, which corresponds to the oxygen atom common to a PO_{4} tetrahedron and a MoO_{6} octahedron.
(ii) the intermediate bonds $\left(\langle\mathrm{P}-\mathrm{O}\rangle_{3}=\right.$ $1.576 \AA$), in which the oxygen atom is linked to a phosphorus atom and a silicon atom simultaneously.
(iii) the long bonds $\left(\langle\mathrm{P}-\mathrm{O}\rangle_{3}=1.595 \AA\right)$, in which the bridging oxygen atom is shared by two PO_{4} tetrahedra.

Nevertheless the PO_{4} tetrahedra are almost regular and the phosphorus atom is off center by about $0.11 \AA$ with respect to the center of gravity of the " O_{4} " tetrahedron.

The SiO_{4} tetrahedron are also quasi-regular (Table IIC): a short $\mathrm{Si}-\mathrm{O}$ bond ($1.579 \AA$) is observed for the bridging oxygen atom common to two Si whereas the three other $\mathrm{Si}-\mathrm{O}$ bonds in which each oxygen atom is
${ }^{2}\langle\mathrm{P}-\mathrm{O}\rangle_{n}$ is the mean value of $n \mathrm{P}-\mathrm{O}$ bonds.
common to a SiO_{4} and a PO_{4} tetrahedron are longer $\left(\langle\mathrm{Si}-\mathrm{O}\rangle_{3}=1.619 \AA\right)$.
The tervalent state observed for molyb-

Fig. 2. Projection along a of the $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ structure.

TABLE II
A. Geometry of MoO_{6} Octahedron

Mo	$O(1)$	$O(2)$	$O(3)$	$O(4)$	$O(5)$	$O(6)$
$O(1)$	$2.083(2)$	$2.858(3)$	$2.856(3)$	$3.087(3)$	$2.959(3)$	$4.814(3)$
$O(2)$	$86.58(8)^{\circ}$	$2.085(2)$	$2.858(3)$	$2.962(4)$	$4.184(3)$	$3.083(3)$
$O(3)$	$86.56(8)^{\circ}$	$86.56(9)^{\circ}$	$2.083(2)$	$4.187(3)$	$3.083(4)$	$2.961(3)$
$O(4)$	$94.95(9)^{\circ}$	$89.95(9)^{\circ}$	$176.12(9)^{\circ}$	$2.106(3)$	$2.943(3)$	$2.939(3)$
$O(5)$	$89.98(8)^{\circ}$	$176.19(8)^{\circ}$	$94.85(9)^{\circ}$	$88.74(9)^{\circ}$	$2.103(2)$	$2.941(3)$
$O(6)$	$176.22(8)$	$94.81(8)^{\circ}$	$90.01(8)^{\circ}$	$88.57(8)^{\circ}$	$88.73(8)^{\circ}$	$2.103(2)$

B. Distances and Angles in PO_{4} Tetrahedra

$\mathrm{P}(1)$	O(3)	$\mathrm{O}\left(5^{\text {i }}\right.$)	O(7)	$\mathrm{O}(8)$
O(3)	1.486(2)	2.550(3)	2.518(3)	2.493(3)
$\mathrm{O}\left(5^{\text {j }}{ }^{\text {a }}\right.$	$117.7(1)^{\circ}$	1.494(2)	2.500(3)	2.500 (2)
O(7)	$110.7(1)^{\circ}$	109.1(1)	$1.575(2)$	2.469(3)
$\mathrm{O}(8)$	$107.9(1)^{\circ}$	108.0(1)	102.3(1)	1.595(1)
P (2)	O(1)	$\mathrm{O}\left(4^{\text {ii) }}\right.$	$\mathrm{O}\left(10^{\text {iii }}\right)$	O(12)
$\mathrm{O}(1)$	1.488(2)	2.554(4)	2.519(3)	2.492(2)
$\mathrm{O}\left(4^{\text {ii) }}\right.$	$117.9(1)^{\circ}$	1.493(3)	2.499(3)	2.498(3)
$\mathrm{O}\left(10^{\text {iii) }}\right.$)	$110.6(1)^{\circ}$	109.0(1)	$1.576(2)$	2.470(3)
$\mathrm{O}(12)$	107.9(1) ${ }^{\circ}$	$108.0(1)^{\circ}$	102.4(1) ${ }^{\circ}$	1.595(2)
P(3)	$O\left(2^{\text {iii }}\right)$	$\mathrm{O}\left(6^{\text {iv }}\right)$	O(11)	O(12)
$\mathrm{O}\left(2^{\text {iii }}\right)$	$1.485(2)$	2.546(3)	2.519(3)	2.491(3)
$\mathrm{O}\left(6^{\text {iv }}\right)$	$117.6(1)^{\circ}$	$1.493(2)$	$2.501(3)$	2.497(3)
O(11)	110.7(1) ${ }^{\circ}$	109.1(1) ${ }^{\circ}$	1.576(2)	2.469(3)
$\mathrm{O}(12)$	$108.0(1)^{\circ}$	107.9(1) ${ }^{\circ}$	102.3(1) ${ }^{\circ}$	1.594(2)

C. Distances and Angles in SiO_{4} Tetrahedron

Si	$\mathrm{O}\left(7^{v}\right)$	$\mathrm{O}(9)$	$\mathrm{O}(10)$	$\mathrm{O}(11)$
$\mathrm{O}(7)$	$1.620(2)$	$2.616(2)$	$2.641(3)$	$2.642(3)$
$\mathrm{O}(9)$	$109.7(1)^{\circ}$	$1.579(1)$	$2.614(2)$	$2.613(2)$
$\mathrm{O}(10)$	$109.3(1)^{\circ}$	$109.7(1)^{\circ}$	$1.618(2)$	$2.639(3)$
$\mathrm{O}(11)$	$109.3(1)^{\circ}$	$109.6(1)^{\circ}$	$109.2(1)^{\circ}$	$1.619(2)$

${ }^{a}$ Symmetry code: i, $-x,-y,-z ;$ ii, $\frac{1}{2}-x, \frac{1}{2}-y,-z ;$ iii, $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ; i v, \frac{1}{2}+x$, $\frac{1}{2}-y, \frac{1}{2}+z ; v,-x, y, \frac{1}{2}-z$.
denum in this compound must be pointed out, owing to the fact that this oxidation state is rarely observed for molybdenum in oxides. The existence of this Mo(III) silicophosphate suggests that the formula proposed for the oxide $A \mathrm{Mo}_{3}^{\mathrm{IV}} \mathrm{P}_{5.8} \mathrm{Si}_{2} \mathrm{O}_{25}(5-7)$ could be, in fact, $\mathrm{AMO}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$; the latter
mixed valence oxide, which is also characterized by isolated MoO_{6} octahedra, would present two localized states for molybdenum, corresponding to the presence of ($\mathrm{Mo}^{\text {IV }} \mathrm{O}_{6}$) and $\mathrm{Mo}^{\mathrm{HI}} \mathrm{O}_{6}$ octahedra simultaneously in the structure. The interatomic distances $\mathrm{Mo}^{\mathrm{II}}-\mathrm{O}$ observed in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$
(Table IIA) are in agreement with those observed for one type of MoO_{6} octahedron in $A \mathrm{Mo}_{2}{ }^{\mathrm{IV}} \mathrm{Mo}^{\mathrm{III}} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (5-7); these octahedra are characterized by three short Mo-O dis-tances- $2.084 \AA$ in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and $2.044 \AA$ in $\mathrm{RbMO}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$-and three longer $\mathrm{Mo}-\mathrm{O}$ distances- $2.104 \AA$ in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and 2.059 \AA in $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$.

The structure of this oxide is closely related to that of $\mathrm{AMO}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$, as shown by
a comparison of the projections along b (Fig. 1) and a (Fig. 2), respectively. Both frameworks are formed of identical mixed slabs $\left|\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right|_{\infty}$ built of corner-sharing $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups, MoO_{6} octahedra, and PO_{4} tetrahedra. The projection of such a slab along [103] on the (001) plane (Fig. 3a) shows that it can be described as built of $\mathrm{Si}_{2} \mathrm{P}_{6} \mathrm{O}_{25}$ units previously observed in $\mathrm{AMO}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (Fig. 3b) (5-7) and in the oxides $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ (10)

Fig. 3. (a) Projection along $|103|$ on the 001 plane of $\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}$ slab. (b) Projection along c of the $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ structure.

Fig. 4. Columns formed by the connection between two $\mathrm{MO}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}$ slabs (a) in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$, (b) in $A \mathrm{Mo}_{3} \mathrm{P}_{6}$ $\mathrm{Si}_{2} \mathrm{O}_{25}$.
and the oxide $\mathrm{Si}_{5} \mathrm{P}_{6} \mathrm{O}_{25}$ (11). Nevertheless, these tetrahedral units of $\mathrm{Si}_{2} \mathrm{P}_{6} \mathrm{O}_{25}$, unlike those of the other oxides, are not isolated in $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$; they share the corners of the PO_{4} tetrahedra, forming $\mathrm{P}_{2} \mathrm{O}_{7}$ groups which are common to two adjacent $\left[\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right]$ slabs. Consequently the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups and the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups form a three-dimensional framework $\left[\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right]_{\infty}$ which delimits octahedral cavities where the Mo(III) ions are located.

The main difference between $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ lies in the junction between the $\left[\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right]$ slabs along the c direction. In $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ two adjacent slabs are linked directly to each other, in such a way that three PO_{4} tetrahedra of one slab share their corners with the three other PO_{4} tetrahedra of the second slab (Fig. 1), forming units of two octahedra connected through three $\mathrm{P}_{2} \mathrm{O}_{7}$ groups characterized by an eclipsed configuration (Fig. 4a). In AMo_{3} $\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$, two successive $\left[\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}\right]$ slabs are connected to each other through a "plane" of " MoO_{6} " octahedra whose ternary axis is parallel to c (Fig. 2); these additional octahedra share their vertices with the PO_{4} tetrahedra, forming unit built of three octahedra and six PO_{4} tetrahedra (Fig. 4b) previously described (5). Thus, it
appears that the structure of the oxides $\mathrm{AMO}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ can be deduced from that of $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ by the simple introduction of planes of MoO_{6} octahedra between the $\mid \mathrm{Mo}_{2}$ $\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}$ layers, forming intersecting tunnels where the additional A ions ($\mathrm{K}, \mathrm{Rb}, \mathrm{Tl}$) are located. Consequently, a new series of oxides can be predicted to correspond to the general formulation $A \mathrm{MoO}_{3}\left(\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2}\right.$ $\left.\mathrm{O}_{22}\right)_{n}$, where n is an integral number; in this series $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and $\mathrm{AMo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ correspond to the members $n=\infty$ and $n=1$, respectively. This phenomenon, the formation of additional tunnels, is closely related to the one observed in pure octahedral frameworks. It is indeed observed in the pyrochlore structure $A M_{2} \mathrm{O}_{6}$ (Fig. 5a), which can be deduced from the hexagonal tungsten bronze structure $\mathrm{AM}_{3} \mathrm{O}_{9}$ (HTB slabs) by introduction of similar MO_{3} planes of octahedra (12) so that it can be described as the first members of the series $A M O_{3}$ $\left(A M_{3} \mathrm{O}_{9}\right)_{n}$. Also closely related to those structures are the oxides $A \mathrm{MoO}_{3}\left(A M_{6} \mathrm{O}_{15}\right)_{n}$ and $\left(A M_{3} \mathrm{O}_{9}\right)_{n^{\prime}}(13-15)$.

The structure of the vanadosilicophosphate $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ (10) is also closely related to the structures of $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and $\mathrm{AMO}_{3} \mathrm{P}_{6}$ $\mathrm{Si}_{2} \mathrm{O}_{25}$. The latter oxide is also characterized by $\mathrm{Si}_{2} \mathrm{P}_{6} \mathrm{O}_{25}$ units, which are isolated as in $\mathrm{AMo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (5-7). Again one observes similar mixed slabs parallel to the (001) plane of the hexagonal cell (Fig. 6a). However, in that oxide the slabs are silicon defi-

Fig. 5. Pyrochlore structure $A M_{2} \mathrm{O}_{6}$.

Fig. 6. Projections of $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ structure (a) along c , (b) along $|120|$ showing the connection between two $\mathrm{Mo}_{2} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{22}$ slabs (shaded polyhedra) by a plane of VO_{6} octahedra.
cient, so that in the same slab one row of $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups alternates with two rows of SiO_{4} tetrahedra. In $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ the different slabs are connected to each other through additional VO_{6} octahedra whose ternary axes are parallel to c (Fig. 6b) as in MoP_{3} SiO_{11}. However, the mode of connection is very different from that observed for Mo $\mathrm{P}_{3} \mathrm{SiO}_{11}$; each additional VO_{6} octahedron shares one face with the octahedron belonging to one slab and shares its three other vertices with the PO_{4} tetrahedra be-
longing to the other slab, so that $\mathrm{V}_{2} \mathrm{O}_{9}$ clusters are formed.

Conclusions

The structural study of $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ shows that the tervalent state of molybdenum is quite stable in oxides that are unambiguous. This study leads us to suggest that the formula of the intersecting tunnel structure $A \mathrm{Mo}_{3} \mathrm{P}_{5.8} \mathrm{Si}_{2} \mathrm{O}_{25}$ is in fact $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$, characterized by the simultaneous presence
of Mo(III) and Mo(IV) ions in octahedral coordination. The close relationships between $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ and the oxides $\mathrm{AMo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2}$ O_{25} and $\mathrm{V}_{3} \mathrm{P}_{5} \mathrm{SiO}_{11}$ show the great flexibility of the $\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ units and offer a wide field of research for the synthesis of structures characterized by a mixed framework. The introduction of "planes of octahedra" similar to the phenomenon observed in octahedra frameworks such as those related to the HTBs and pyrochlore should make it possible to generate new oxides with a tunnel structure.

References

1. B. Raveau, in "Proceedings, Indian National Science Academi, New Delhi, 52, 67 (1986).
2. B. Raveau, in 'Proceedings, Indian Academy of Sciences, Bangalore, 96, 419 (1986).
3. A. Leclaire, J. C. Monier, and B. Raveau, J. Solid State Chem. 48, 147 (1983).
4. A. Leclaire, J. C. Monier, and B. Raveau, J. Solid State Chem. 59, 301 (1985).
5. A. Leclaire, J. C. Monier, and B. Raveau, Acta Crystallogr. Sect. B 40, 180 (1984).
6. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Mater. Chem. Phys. 12, 537 (1985).
7. A. Leclaire, J. C. Monier, and B. Raveau, Acta Crystallogr. Sect. C 41, 1719 (1985).
8. "International Tables for X-ray Crystallography," Vol. IV, p. 72, Kynoch Press, Birmingham, 1974.
9. A. Leclaire, unpublished.
10. A. Leclaire, H. Chahboun, D. Groult, and B. Raveau, J. Solid State Chem. 65, 168 (1986).
11. H. Mayer, Mon. Chem. 105, 46 (1974).
12. B. Raveau, Rev. Inorg. Chem. 1, 81 (1979).
13. C. Michel, A. Guyomarc'h, and B. Raveau, J. Solid State Chem. 25, 251 (1978).
14. C. Michel, A. Guyomarc'h, and B. Raveau, J. Solid State Chem. 22, 393 (1977).
15. G. Desgardin, C. Robert, D. Groult, and B. Raveau, J. Solid State Chem. 22, 101 (1977).

[^0]: ${ }^{1}$ Lists of structure factors and of anisotropic thermal parameters are available from the authors on request.

